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Challenges: Reactive LES 

CHARLES 
(Stanford)	


LESLIE3D 
(Georgia Tech)	


OpenFOAM 
(OpenCFD)	


Fluent	

(Ansys)	


Ref: 2013 - Cocks, Sankaran, Soteriou, “Is LES of reacting flow predictive? Part 1: Impact of Numerics” 

 Need to determine BEST discretization schemes for Reacting LES   

 Algorithm comparisons: 
 - identical subgrid modeling 
 - differences reside in numerics 

2	




Distribution A – Approved for public release; distribution is unlimited 

Objectives 
 GOAL:  

 damp high frequency errors while preserving low wave 
 content (ie: low-pass response) 

 
 1) compare damping character of Artificial Dissipation and Filtering 
 
 2) formulate filter as an equivalent Artificial Dissipation scheme 
  - consequence of filter damping for stiff problems  
 
 3) insight on achieving “ideal” low-pass response for general  
     problems 
 
 
 •  von Neumann Analysis 

•  Crank-Nicolson w/ 6th order central differencing 
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von Neumann Analysis 

Eigenvalues of the amplification matrix specify 
growth factor and phase errors. 

Phase Error Growth Factor 

Qn+1 = G θ( )Qn

∂Q
∂t

+ A ∂Q
∂x

= 0

gi 2
φ

φexact
=
− tan−1 Im gi( ) / Re gi( ){ }

CFLi ×θ

Qi = Q̂ k( )eikx
k
∑

Qi+i = Q̂ k( )eik x+Δx( )

k
∑ = Q̂ k( )eikΔxeikx

k
∑

1D Euler System (quasi-linear form): 

kΔx = θ  
with θ ∈ −π ,π[ ]
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Artificial Dissipation 
∂Q
∂t

+ A ∂Q
∂x

= −1( )m−1 Δx( )2m−1 ε2m λu+c
∂2mQ
∂x2mm

∑

ε2 = 1/ 2
ε4 = 1/12
ε6 = 1/ 60

Qi+1 −Qi−1

2Δx
− 1
2

Qi+1 − 2Qi +Qi−1

Δx
⎛
⎝⎜

⎞
⎠⎟ =

Qi −Qi−1

Δx
−Qi+2 + 8Qi+1 − 8Qi−1 +Qi−2

12Δx
+ 1
12

Qi+2 − 4Qi+1 + 6Qi − 4Qi−1 +Qi−2

Δx
⎛
⎝⎜

⎞
⎠⎟ =

4Qi+1 + 6Qi −12Qi−1 + 2Qi−2

12Δx

m = 1: 
m = 2: 
etc… 

     governing equations augmented with dissipation terms 

upwind biased stencils 
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Filtering (Explicit) 

 
 
 
represent total amplification of filter scheme as: 
 
 
 
 with  

Qi = 1+ S2m Δx( )2m ∂2m

∂x2mm
∑⎡

⎣
⎢

⎤

⎦
⎥Qi

*

G θ( ) = R θ( )G* θ( )

R θ( ) 2
≤1 

R θ = ±π( ) = 0

NOTE: filter is purely 
dissipative and does not 
alter original scheme’s 
phase behavior 

     smoothing of solution as post-process of integration step 
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Filtering (Implicit) 

 
 
 
represent total amplification of filter scheme as: 
 
 
 
 with  

G θ( ) = R θ( )G* θ( )

R θ( ) 2
≤1 

R θ = ±π( ) = 0

NOTE: filter is purely 
dissipative and does not 
alter original scheme’s 
phase behavior 

     smoothing of solution as post-process of integration step 

1+ S '2m Δx( )2m ∂2m

∂x2mm
∑⎡

⎣
⎢

⎤

⎦
⎥Qi = 1+ S2m Δx( )2m ∂2m

∂x2mm
∑⎡

⎣
⎢

⎤

⎦
⎥Qi

*
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Artificial Dissipation: 
Growth Factor 

2nd Order AD	


4th Order AD	


6th Order AD	


no AD	


2nd Order AD	


4th Order AD	

6th Order AD	


no AD	
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Explicit Filter: Growth Factor  

Qi = 1+ Sm Δx( )2m ∂2m

∂x2m

⎡

⎣
⎢

⎤

⎦
⎥Qi

*  with  Sm =
−1( )m−1

22mShapiro Filter (1975) 

500th Order 	


10th Order 	


6th Order 	


2nd Order 	


4th Order 	


500th Order 	


10th Order 	


6th Order 	


4th Order 	


2nd Order 	
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2nd Order Implicit Filter: 
 Growth Factor  

1+ 1−δ( )S Δx( )2 ∂2

∂x2

⎡

⎣
⎢

⎤

⎦
⎥Qi = 1+ S Δx( )2 ∂2

∂x2

⎡

⎣
⎢

⎤

⎦
⎥Qi

*  with δ ∈ 0,1]Long Filter (1971) 

δ = 1e−1

δ = 1e− 2

δ = 1e− 3

δ = 1e− 4 δ = 1e− 5
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2nd vs. 4th Order Implicit Filters: 
 Growth Factor Error  

1+ S Δx( )2 ∂2

∂x2

⎡

⎣
⎢

⎤

⎦
⎥Qi = 1+ S Δx( )2 ∂2

∂x2 +
−δ

4 − 8δ
⎛
⎝⎜

⎞
⎠⎟ S Δx( )4 ∂4

∂x4

⎡

⎣
⎢

⎤

⎦
⎥Qi

*   with δ ∈ 0,14th order Lele 
Filter (1992) 

* 500th Order expFil 	


decreasing delta	
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Filtering as an Artificial 
Dissipation Scheme 

Qi
n+1 = 1+ 1

4
Δx( )2 ∂2

∂x2

⎡

⎣
⎢

⎤

⎦
⎥Qi

*

= 1+ 1
4

Δx( )2 ∂2

∂x2

⎡

⎣
⎢

⎤

⎦
⎥ Qi

n − Δt 1−θ( ) ∂E
n

∂x
+ Δtθ ∂E*

∂x
⎡

⎣
⎢

⎤

⎦
⎥  with θ ∈ 0,1[ ]

Qi
n+1 −Qi

n

Δt
+ 1−θ( ) ∂E

n

∂x
+ θ( ) ∂E

*

∂x
= 1
4

Δx( )2
Δt

∂2Qn

∂x2
− 1−θ( ) 1

4
Δx( )2 ∂

3En

∂x3
− θ( ) 1

4
Δx( )2 ∂

3E*

∂x3

   dispersive terms: 
•  restore phase of original scheme 

   dissipation term scales as 
•  increased damping w/ decreasing time-step 

 

ε2 ~ 1 /CFLu+c
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Effect of CFL 

6th Order expFil 	


10th Order expFil 	


AD (CFL = 1e0)	


AD (CFL = 1e-1)	


* AD shown is 6th order	


AD (CFL = 1e-2)	


10th Order expFil 	


6th Order expFil 	


AD (CFL = 1e0)	


AD (CFL = 1e-1)	


AD (CFL = 1e-2)	
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Cumulative Low CFL Damping  

CFLu+c = 10−4

Nsteps = 104

6th Order AD	


10th Order expFil	


6th Order expFil	


2nd Order impFil	

δ = 1e− 7
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Summary 
•  Filtering is a form of artificial dissipation 

–  damping behavior more predictable and tunable  
•  Explicit filters require very high order for low-pass response 

–  overly dissipative for small time-steps 
•  Implicit filters can be efficiently designed for low-pass response 

–  superior to artificial dissipation or explicit filters 
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Staggered Grid  
Von Neumann Analysis 

Eigenvalues of the amplification matrix specify 
growth factor and phase errors. 

Continuity/Energy Momentum 

Staggered Grid Scheme/ Quasi-Linear Form 

Phase Error Growth Factor 

1D Euler Eqns 
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Runge Kutta 4: von Neumann 
Collocated Staggered 

No damping of 
highest modes 

No convection of 
highest modes 

No damping of 
PARTICLE WAVE’s 
highest modes Highest ACOUSTIC 

modes damped 

No convection of 
PARTICLE WAVE’s 
highest modes 

Slow convection of 
highest ACOUSTIC 
modes 
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Kinetic Energy Preservation (KEP) 

  

∂
∂t

1
2

ui
2⎛

⎝⎜
⎞
⎠⎟
+ ∂
∂x j

1
2

ui
2uj

⎛
⎝⎜

⎞
⎠⎟
= −

∂ui P
∂xi

+ ui

∂τ ij

∂x j

⎛

⎝
⎜

⎞

⎠
⎟

 

ui

∂ui

∂t
+
∂uiu j

∂x j

= − ∂P
∂xi

+
∂τ ij

∂x j

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Incompressible  Flow:	
	 0j

j

u
x

∂
=

∂

Compressible  Flow:	
	 2

0
2
i

j i i i j ij
j j i j

u u u u u u P
t x t x x x
ρ ρ ρ ρ τ

⎧ ⎫ ⎧ ⎫− ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪+ + + + − =⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

  

∂
∂t

1
2
ρui

2⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂x j

ρuj

ui
2

2
⎛

⎝⎜
⎞

⎠⎟
= −ui

∂P
∂xi

+ ui

∂τ ij

∂x j

⎛

⎝
⎜

⎞

⎠
⎟

-  K = ½ ui
2 bounded and constant at inviscid limit 

-  KEP schemes satisfy secondary equation discretely 
-  Richtmeyer & Morton (1967) 
-  Arakawa (1966) 

-  Discrete analogue seeks: 
-  Accurate transport of KE     accurate physical transfer of energy: E = KE + Uint  

-  “in computations of turbulent flow fields, dissipative errors show up at the level of kinetic energy” (Mahesh 2004) 

-  Robust at inviscid limit (Re     ∞) 
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KEP: Applied to 1D Euler 
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-‐‑  compare  Crank-‐‑Nicolson  (CN)  with  Fully  KEP  scheme  (F-‐‑KEP)	

-‐‑      discrete  secondary  equation  satisfied  to  machine  zero  if  KEP	
	


(CN)	 (F-‐‑KEP)	

with	

  

(ρφk )i
n+1 − (ρφk )i

n

Δt
+ 1

Vi

φ( )
f
∑

f

m
(ρ u j ) f

n+1/2 ⋅Si +
1
Vi

∂pυk , j

∂x j

⎛

⎝
⎜

⎞

⎠
⎟

f
∑

f

n+1/2

⋅Si = 0

11 ( )
2

m n nφ φ φ+= +
1

1

( ) ( )
( ) ( )

n n
m

n n

ρφ ρφφ
ρ ρ

+

+

+
=

+

2 1 2 2
1/2 1/2

, , , ,
( ) ( ) 1 1( u ) ( )

2 2

mn n
n m nk i k i k
j f f i k i k j f i

f fi if

S p S RESIDUAL
t V V

ρφ ρφ φρ φ υ
+

+ +⎛ ⎞− + ⋅ + ⋅ =⎜ ⎟Δ ⎝ ⎠
∑ ∑

2 1
2 2 2 2

m m m
k k k

i nbrf

φ φ φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(Collocated Grid) 

Subbareddy/Candler(2009)	

Merkle (2013)	


1

k

u
e
Y

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Evaluating KEP: u2 
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Mach  =  0.859	 disturb  =  0.01%	

disturb  =  1%	

-  F-KEP always secondary conservative 
-  CN is KEP for low compressibility effects 
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